Inflection Generation as Discriminative String Transduction
نویسندگان
چکیده
We approach the task of morphological inflection generation as discriminative string transduction. Our supervised system learns to generate word-forms from lemmas accompanied by morphological tags, and refines them by referring to the other forms within a paradigm. Results of experiments on six diverse languages with varying amounts of training data demonstrate that our approach improves the state of the art in terms of predicting inflected word-forms.
منابع مشابه
Leveraging Inflection Tables for Stemming and Lemmatization
We present several methods for stemming and lemmatization based on discriminative string transduction. We exploit the paradigmatic regularity of semi-structured inflection tables to identify stems in an unsupervised manner with over 85% accuracy. Experiments on English, Dutch and German show that our stemmers substantially outperform Snowball and Morfessor, and approach the accuracy of a superv...
متن کاملMorphological Analysis without Expert Annotation
The task of morphological analysis is to produce a complete list of lemma+tag analyses for a given word-form. We propose a discriminative string transduction approach which exploits plain inflection tables and raw text corpora, thus obviating the need for expert annotation. Experiments on four languages demonstrate that our system has much higher coverage than a hand-engineered FST analyzer, an...
متن کاملImproving Sequence to Sequence Learning for Morphological Inflection Generation: The BIU-MIT Systems for the SIGMORPHON 2016 Shared Task for Morphological Reinflection
Morphological reinflection is the task of generating a target form given a source form and the morpho-syntactic attributes of the target (and, optionally, of the source). This work presents the submission of Bar Ilan University and the Massachusetts Institute of Technology for the morphological reinflection shared task held at SIGMORPHON 2016. The submission includes two recurrent neural networ...
متن کاملIntegrating Joint n-gram Features into a Discriminative Training Framework
Phonetic string transduction problems, such as letter-to-phoneme conversion and name transliteration, have recently received much attention in the NLP community. In the past few years, two methods have come to dominate as solutions to supervised string transduction: generative joint n-gram models, and discriminative sequence models. Both approaches benefit from their ability to consider large, ...
متن کاملA Discriminative Syntactic Model for Source Permutation via Tree Transduction
A major challenge in statistical machine translation is mitigating the word order differences between source and target strings. While reordering and lexical translation choices are often conducted in tandem, source string permutation prior to translation is attractive for studying reordering using hierarchical and syntactic structure. This work contributes an approach for learning source strin...
متن کامل